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Exercise 2.4.1

Solve the heat equation Ou/0t = kd?u/0z%, 0 < x < L, t > 0, subject to

ou

So(0.)=0  t>0

ou

%(L’ t)=0 t>0.
(a) u(x,0)= {(1) i i 2;; (b) wu(x,0) =6+ 4cos &TT:E
(c) wu(z,0)=-2 sinﬂ—; (d) wu(z,0)=-3 COSS%

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the
method of separation of variables can be applied. Assume a product solution of the form
u(x,t) = X(x)T'(t) and substitute it into the PDE

ou 0%u 0 0?

o 972 5 (X (z)T ()]

and the boundary conditions.

ou

5200 =0 — X'(0)T(t) =0 - X'(0)=0

%(L,t) =0 — X'(L)rt)=0 - X(L)=0
Now separate variables in the PDE. - 2
XE = kTW

Divide both sides by kX (x)T'(t). Note that the final answer for u will be the same regardless
which side £ is on. Constants are normally grouped with t.

Gdr_1dx
KT dt, X da?
SN—— SN——

function of ¢t function of =

The only way a function of ¢ can be equal to a function of x is if both are equal to a constant A.

1dl 1d*X
KT dt X da?
As a result of applying the method of separation of variables, the PDE has reduced to two

ODEs—one in z and one in t.
1 dI'

W
1d°X

X da?
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Values of A that result in nontrivial solutions for X and 7" are called the eigenvalues, and the

solutions themselves are known as the eigenfunctions. Suppose first that A is positive: A = a?.

The ODE for X becomes 2
X 2
Prei

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (x) = Cy coshax + Cysinh ax
Take a derivative with respect to x.
X'(z) = a(C} sinh ax + C5 cosh ax)
Apply the boundary conditions now to determine C7 and Cs.

X’(O) = OZ(CQ) =0
X'(L) = a(Cy sinhaL + Cycoshal) =0

The first equation implies that Cy = 0, so the second equation reduces to Ciasinh oL = 0.
Because hyperbolic sine is not oscillatory, C; must be zero for the equation to be satisfied. This
results in the trivial solution X (z) = 0, which means there are no positive eigenvalues. Suppose
secondly that A is zero: A = 0. The ODE for X becomes

d2X

e 0.

The general solution is obtained by integrating both sides with respect to = twice.

dX
= _C
dx 5
Apply the boundary conditions now.
X'(0) = C;s
X'(L)=C5 =
Consequently,
ax 0
de
Integrate both sides with respect to x once more.
X(z)=0Cy

Zero is an eigenvalue because X (x) is not zero. The eigenfunction associated with it is Xo(x) = 1.
Solve the ODE for T now with A = 0.

ar
i 0 — Tp(t) = constant

Suppose thirdly that A is negative: A = —32. The ODE for X becomes

A2 X

_ 2
prol S

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.4 - Exercise 2.4.1 Page 3 of 7

The general solution is written in terms of sine and cosine.
X (x) = Cs cos fx + Cg sin fx
Take a derivative of it with respect to x.
X'(z) = B(—Cjsin Bz + Cg cos Bz)
Apply the boundary conditions now to determine C5 and Cj.

X'(0) =5(Cs) =0
X'(L) = B(—Cj5sin BL + Cg cos L) = 0

The first equation implies that Cg = 0, so the second equation reduces to —C58sin L = 0. To
avoid the trivial solution, we insist that Cs # 0. Then

—BsinBL =0
sin 8L =0
BL=nw, n=12,...
nm
Bn = f
There are negative eigenvalues A = —n?72/L?, and the eigenfunctions associated with them are

X (x) = Cs cos fx + Cg sin fx
nmwx
=Cscosfxr  — Xp(x) = cos %
n only takes on the values it does because negative integers result in redundant values for A. With

this formula for A, the ODE for T" becomes

1dT  n’n?

kT dt L2
Multiply both sides by kT

dT kn2m?

o T

dt L?

The general solution is written in terms of the exponential function.

kn2m?

2,2
T(t) = C7exp <— I t) —  T,(t) =exp <—knL27rt>

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X, (x)7T,(t) over all the eigenvalues.

& kn2m2
u(z,t) = Ag + ZA” exp <—T227rt> cos 1L

n=1

Use the initial condition u(x,0) = f(z) to determine Ay and A,.

nmwx

u(z,0) = Ao + iAncos - = f(z)
n=1
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Part (a)
Here f(z) =0 for z < L/2 and f(z) =1 for x > L/2.

nnx

u(z,0) = Ao + ZA” cos — f(z) (1)
n=1

To find Ay, integrate both sides of equation (1) with respect to  from 0 to L.

L o0 L
/()(Ao—F;Ancoan:E)dx:/o f(x)dx

Split up the integral on the left into two and bring the constants in front. Write out the integral
on the right.

L 00 L L/2 L
AO/ da:—i—ZAn/ cosd:c:/ (O)da:—i—/ (1)dx
0 ot 0 L 0 L/2
—_———
=0
Evaluate the integrals.
L
AOL — 5
1
AO - 5

To find A,,, multiply both sides of equation (1) by cos(mmx /L), where m is a positive integer,

oo
Ay cos m;/m: + nz:l A, cos Lza: cos m;rx = f(x) cos mgm

and then integrate both sides with respect to « from 0 to L.

L 0 L
/0 (AO cos mz:z: + nzl A, cos ﬂ; cos m;rx) dx = /0 f(z) cos m;/m: dx

Split up the integral on the left into two and bring the constants in front. Write out the integral
on the right.

L

L 00 L L/2
AO/O cos m;m: dx + ,; An/o cos nLﬂ cos m;rx dr = /0 (0) cos m;mc dx + /L/2(1) cos m;mc dx

=0

Because the cosine functions are orthogonal, the second integral on the left is zero if n # m. As a
result, every term in the infinite series vanishes except for the n = m one.

L 9 ML L nwT
A, cos” — dx = cos — dx
0 L L/2

Evaluate the integrals.
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Notice that the summand is zero for even values of n. The answer can thus be simplified (that is,
made to converge faster) by summing over the odd integers only. Make the substitution
n = 2p — 1 in the sum.

1 2 &K sin @ k(2p — 1)%n2 (2p — )7z
U(.CU, t) = 5 — ; Z 2]’)771 exXp <— L2 t> COS I3
2p—1=1
Therefore,
1 2N (—1)7 k(2p — 1)%72 (2p — 1)7a
u(x,t):2+7rpz:;2p_1exp<— 2 t | cos T
Part (b)

— L, 3T
Here f(z) = 6 + 4 cos °7*.

o
3
u(m,O):A0+ZAncos$:6—|—4cos%w

n=1

By inspection we see that the coefficients are

Ap=6
A, = 0 ifn#3 .
4 ifn=3
Therefore,
I’k 3
u(x,t) = 6+ 4exp (— 22 t> co %x
Part (c)
Here f(z) = —2sin 7F.
[e.e]
u(z,0) = Ag + Z Ay, cos Lzzn = —2sin LLx (2)

n=1

To find Ay, integrate both sides of equation (2) with respect to  from 0 to L.
L o0 L
/0 (Ao—l—;:lAncoanx)d:c:—/o 2sin%xd:c
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Split up the integral on the left into two and bring the constants in front.

L
Ao/ dm+§ A, / cosmdx——/ QSin%dfc
0 0
—_—

=0

Evaluate the integrals.

4L

AL = -=
™
4

Ag=—=
s

To find A,,, multiply both sides of equation (2) by cos(mmx/L), where m is a positive integer,

mm
Ag cos

(o)
T nwT MmTT . T mnT
+ E A, cos —— cos = —2sin — cos

L L L L

and then integrate both sides with respect to x from 0 to L.

L L
/ Ag Cos + Z A, cos w cos mre dr = — / 2sin ™ cos mre dx
0 0 L

L
Split up the integral on the left into two and bring the constants in front.

L
Ao/o cos dz+ZA / cosmcosmzxdm:—/o 2sin%$cosm2xdm
M—’

=0

Because the cosine functions are orthogonal, the second integral on the left is zero if n £ m. As a
result, every term in the infinite series vanishes except for the n = m one.

L
An/O COSZTledCC:—/O ZSln%cosn—Zxdx

| (L) 0 ifn=1
nly ) = Y2L1 —-1)"

2 ol ) A

T nc—1
0 ifn=1
An: _1\n .
EETC I

T nc—1

The general solution then becomes

41+ (-1 kn?m? nrx
u(x, ——+ZLT 7] ]exp(— Iz t>cos 7

Notice that the summand is zero if n is odd. The solution can thus be simplified (that is, made to
converge faster) by summing over the even integers only. Make the substitution n = 2p in the sum.

o0

4 4 2 k(2p)%n? 2pmx
u(.fl/‘,t) = 7; + Z |:7I'(2p)2—1:| exp < L2 t ) cos I

2p=2
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Therefore,
4 8 1 Am2p%k 2
u(z,t) = - + FPZ:I mexp <—L2t> cos —7—.
Part (d)
8
Here f(x) = —3cos 57=.
> nmwT 8
u(z,0) = Ao + ZA"COST = —3COST
n=1
By inspection we see that the coefficients are
Ao=0
4 {0 ifn#s
-3 ifn=28

Therefore,

12 ST

A2k
u(z,t) = —3exp (—Mt> c sme
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