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Exercise 2.4.1

Solve the heat equation ∂u/∂t = k∂2u/∂x2, 0 < x < L, t > 0, subject to

∂u

∂x
(0, t) = 0 t > 0

∂u

∂x
(L, t) = 0 t > 0.

(a) u(x, 0) =

{
0 x < L/2

1 x > L/2
(b) u(x, 0) = 6 + 4 cos

3πx

L

(c) u(x, 0) = −2 sin πx
L

(d) u(x, 0) = −3 cos 8πx
L

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the
method of separation of variables can be applied. Assume a product solution of the form
u(x, t) = X(x)T (t) and substitute it into the PDE

∂u

∂t
= k

∂2u

∂x2
→ ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]

and the boundary conditions.

∂u

∂x
(0, t) = 0 → X ′(0)T (t) = 0 → X ′(0) = 0

∂u

∂x
(L, t) = 0 → X ′(L)T (t) = 0 → X ′(L) = 0

Now separate variables in the PDE.

X
dT

dt
= kT

d2X

dx2

Divide both sides by kX(x)T (t). Note that the final answer for u will be the same regardless
which side k is on. Constants are normally grouped with t.

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
= λ

As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
= λ


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Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: λ = α2.
The ODE for X becomes

d2X

dx2
= α2X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Take a derivative with respect to x.

X ′(x) = α(C1 sinhαx+ C2 coshαx)

Apply the boundary conditions now to determine C1 and C2.

X ′(0) = α(C2) = 0

X ′(L) = α(C1 sinhαL+ C2 coshαL) = 0

The first equation implies that C2 = 0, so the second equation reduces to C1α sinhαL = 0.
Because hyperbolic sine is not oscillatory, C1 must be zero for the equation to be satisfied. This
results in the trivial solution X(x) = 0, which means there are no positive eigenvalues. Suppose
secondly that λ is zero: λ = 0. The ODE for X becomes

d2X

dx2
= 0.

The general solution is obtained by integrating both sides with respect to x twice.

dX

dx
= C3

Apply the boundary conditions now.

X ′(0) = C3 = 0

X ′(L) = C3 = 0

Consequently,
dX

dx
= 0.

Integrate both sides with respect to x once more.

X(x) = C4

Zero is an eigenvalue because X(x) is not zero. The eigenfunction associated with it is X0(x) = 1.
Solve the ODE for T now with λ = 0.

dT

dt
= 0 → T0(t) = constant

Suppose thirdly that λ is negative: λ = −β2. The ODE for X becomes

d2X

dx2
= −β2X.
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The general solution is written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Take a derivative of it with respect to x.

X ′(x) = β(−C5 sinβx+ C6 cosβx)

Apply the boundary conditions now to determine C5 and C6.

X ′(0) = β(C6) = 0

X ′(L) = β(−C5 sinβL+ C6 cosβL) = 0

The first equation implies that C6 = 0, so the second equation reduces to −C5β sinβL = 0. To
avoid the trivial solution, we insist that C5 6= 0. Then

−β sinβL = 0

sinβL = 0

βL = nπ, n = 1, 2, . . .

βn =
nπ

L
.

There are negative eigenvalues λ = −n2π2/L2, and the eigenfunctions associated with them are

X(x) = C5 cosβx+ C6 sinβx

= C5 cosβx → Xn(x) = cos
nπx

L
.

n only takes on the values it does because negative integers result in redundant values for λ. With
this formula for λ, the ODE for T becomes

1

kT

dT

dt
= −n

2π2

L2
.

Multiply both sides by kT .
dT

dt
= −kn

2π2

L2
T

The general solution is written in terms of the exponential function.

T (t) = C7 exp

(
−kn

2π2

L2
t

)
→ Tn(t) = exp

(
−kn

2π2

L2
t

)
According to the principle of superposition, the general solution to the PDE for u is a linear
combination of Xn(x)Tn(t) over all the eigenvalues.

u(x, t) = A0 +

∞∑
n=1

An exp

(
−kn

2π2

L2
t

)
cos

nπx

L

Use the initial condition u(x, 0) = f(x) to determine A0 and An.

u(x, 0) = A0 +
∞∑
n=1

An cos
nπx

L
= f(x)
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Part (a)

Here f(x) = 0 for x < L/2 and f(x) = 1 for x > L/2.

u(x, 0) = A0 +

∞∑
n=1

An cos
nπx

L
= f(x) (1)

To find A0, integrate both sides of equation (1) with respect to x from 0 to L.

ˆ L

0

(
A0 +

∞∑
n=1

An cos
nπx

L

)
dx =

ˆ L

0
f(x) dx

Split up the integral on the left into two and bring the constants in front. Write out the integral
on the right.

A0

ˆ L

0
dx+

∞∑
n=1

An

ˆ L

0
cos

nπx

L
dx︸ ︷︷ ︸

= 0

=

ˆ L/2

0
(0) dx+

ˆ L

L/2
(1) dx

Evaluate the integrals.

A0L =
L

2

A0 =
1

2

To find An, multiply both sides of equation (1) by cos(mπx/L), where m is a positive integer,

A0 cos
mπx

L
+

∞∑
n=1

An cos
nπx

L
cos

mπx

L
= f(x) cos

mπx

L

and then integrate both sides with respect to x from 0 to L.

ˆ L

0

(
A0 cos

mπx

L
+

∞∑
n=1

An cos
nπx

L
cos

mπx

L

)
dx =

ˆ L

0
f(x) cos

mπx

L
dx

Split up the integral on the left into two and bring the constants in front. Write out the integral
on the right.

A0

ˆ L

0
cos

mπx

L
dx︸ ︷︷ ︸

= 0

+

∞∑
n=1

An

ˆ L

0
cos

nπx

L
cos

mπx

L
dx =

ˆ L/2

0
(0) cos

mπx

L
dx+

ˆ L

L/2
(1) cos

mπx

L
dx

Because the cosine functions are orthogonal, the second integral on the left is zero if n 6= m. As a
result, every term in the infinite series vanishes except for the n = m one.

An

ˆ L

0
cos2

nπx

L
dx =

ˆ L

L/2
cos

nπx

L
dx

Evaluate the integrals.

An

(
L

2

)
= − L

nπ
sin

nπ

2
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An = − 2

nπ
sin

nπ

2

The general solution then becomes

u(x, t) =
1

2
+
∞∑
n=1

(
− 2

nπ
sin

nπ

2

)
exp

(
−kn

2π2

L2
t

)
cos

nπx

L

=
1

2
− 2

π

∞∑
n=1

sin nπ
2

n
exp

(
−kn

2π2

L2
t

)
cos

nπx

L
.

Notice that the summand is zero for even values of n. The answer can thus be simplified (that is,
made to converge faster) by summing over the odd integers only. Make the substitution
n = 2p− 1 in the sum.

u(x, t) =
1

2
− 2

π

∞∑
2p−1=1

sin (2p−1)π
2

2p− 1
exp

(
−k(2p− 1)2π2

L2
t

)
cos

(2p− 1)πx

L

Therefore,

u(x, t) =
1

2
+

2

π

∞∑
p=1

(−1)p

2p− 1
exp

(
−k(2p− 1)2π2

L2
t

)
cos

(2p− 1)πx

L
.

Part (b)

Here f(x) = 6 + 4 cos 3πx
L .

u(x, 0) = A0 +
∞∑
n=1

An cos
nπx

L
= 6 + 4 cos

3πx

L

By inspection we see that the coefficients are

A0 = 6

An =

{
0 if n 6= 3

4 if n = 3
.

Therefore,

u(x, t) = 6 + 4 exp

(
−9π2k

L2
t

)
cos

3πx

L
.

Part (c)

Here f(x) = −2 sin πx
L .

u(x, 0) = A0 +

∞∑
n=1

An cos
nπx

L
= −2 sin πx

L
(2)

To find A0, integrate both sides of equation (2) with respect to x from 0 to L.

ˆ L

0

(
A0 +

∞∑
n=1

An cos
nπx

L

)
dx = −

ˆ L

0
2 sin

πx

L
dx
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Split up the integral on the left into two and bring the constants in front.

A0

ˆ L

0
dx+

∞∑
n=1

An

ˆ L

0
cos

nπx

L
dx︸ ︷︷ ︸

= 0

= −
ˆ L

0
2 sin

πx

L
dx

Evaluate the integrals.

A0L = −4L

π

A0 = −
4

π

To find An, multiply both sides of equation (2) by cos(mπx/L), where m is a positive integer,

A0 cos
mπx

L
+
∞∑
n=1

An cos
nπx

L
cos

mπx

L
= −2 sin πx

L
cos

mπx

L

and then integrate both sides with respect to x from 0 to L.

ˆ L

0

(
A0 cos

mπx

L
+

∞∑
n=1

An cos
nπx

L
cos

mπx

L

)
dx = −

ˆ L

0
2 sin

πx

L
cos

mπx

L
dx

Split up the integral on the left into two and bring the constants in front.

A0

ˆ L

0
cos

mπx

L
dx︸ ︷︷ ︸

= 0

+

∞∑
n=1

An

ˆ L

0
cos

nπx

L
cos

mπx

L
dx = −

ˆ L

0
2 sin

πx

L
cos

mπx

L
dx

Because the cosine functions are orthogonal, the second integral on the left is zero if n 6= m. As a
result, every term in the infinite series vanishes except for the n = m one.

An

ˆ L

0
cos2

nπx

L
dx = −

ˆ L

0
2 sin

πx

L
cos

nπx

L
dx

An

(
L

2

)
=


0 if n = 1

2L

π

1 + (−1)n

n2 − 1
if n 6= 1

An =


0 if n = 1

4

π

1 + (−1)n

n2 − 1
if n 6= 1

.

The general solution then becomes

u(x, t) = − 4

π
+

∞∑
n=2

[
4

π

1 + (−1)n

n2 − 1

]
exp

(
−kn

2π2

L2
t

)
cos

nπx

L
.

Notice that the summand is zero if n is odd. The solution can thus be simplified (that is, made to
converge faster) by summing over the even integers only. Make the substitution n = 2p in the sum.

u(x, t) = − 4

π
+
∞∑

2p=2

[
4

π

2

(2p)2 − 1

]
exp

(
−k(2p)

2π2

L2
t

)
cos

2pπx

L
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Therefore,

u(x, t) = − 4

π
+

8

π

∞∑
p=1

1

4p2 − 1
exp

(
−4π2p2k

L2
t

)
cos

2pπx

L
.

Part (d)

Here f(x) = −3 cos 8πx
L .

u(x, 0) = A0 +

∞∑
n=1

An cos
nπx

L
= −3 cos 8πx

L

By inspection we see that the coefficients are

A0 = 0

An =

{
0 if n 6= 8

−3 if n = 8
.

Therefore,

u(x, t) = −3 exp
(
−64π2k

L2
t

)
cos

8πx

L
.
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